Endoscopic Negative Pressure Therapy (ENPT) of an Anastomotic Leakage after Total Gastrectomy with Open-Pore Polyurethane-Foam Drainages (OPD) and Open-Pore Film Drainage (OFD)

Gunnar Loske*, Tobias Schorsch, Wolfgang Schulze, Henning Schmidt-Seithe and Christian T. Mueller

Department for General, Abdominal, Thoracic and Vascular Surgery, Katholisches Marienkrankenhaus Hamburg, Germany

*Corresponding author: Gunnar Loske, MD
loske.chir@marienkrankenhaus.org

Department for General, Abdominal, Thoracic and Vascular Surgery, Katholisches Marienkrankenhaus Hamburg, Alfredstrasse 9, 22087 Hamburg, Germany.

Tel: 0049 40 2546 1402
Fax: 0049 40 2546 1400

Citation: Loske G, Schorsch T, Schulze W, Schmidt-Seith H, Mueller CT (2018) Endoscopic Negative Pressure Therapy (ENPT) of an Anastomotic Leakage after Total Gastrectomy with Open-Pore Polyurethane-Foam Drainages (OPD) and Open-Pore Film Drainage (OFD). G J Dig Dis Vol. 4 No.3:8

Abstract

Introduction: Anastomotic leak is the most severe postoperative complication after total gastrectomy. Endoscopic negative pressure therapy (ENPT) in the upper gastrointestinum has been developed to treat transmural defects. For ENPT open-pore polyurethane-foam drainages (OPD) and open-pore film drainages (OFD) can be used to apply intracorporal negative pressure. ENPT was used to treat an anastomotic leak after total gastrectomy in a 71 year old patient who underwent palliative total gastrectomy.

Material and method: Intracavitary variant of ENPT started 25 days after initial gastrectomy with placement of an OPD through the anastomotic defect into the extraluminale cavity. Negative pressure of -125 mmHg was applied with an electronic vacuum device. Simultaneously the cavity was drained, and defect closed. Drain was changed regularly after 3-4 days. After shrunken to a small channel the last period of treatment was done with a small-bore open-pore OFD. For construction a very thin double layered open-pore film (Suprasorb CNP, Drainage Film; Lohmann & Rauscher International GmbH & Co. KG, Rengsdorf, Germany) was used.

Results: Total time to treat the anastomotic leakage with ENPT (OPD and OFD) was 14 days. The anastomotic leak was closed completely only with ENPT. After starting the ENPT a laparotomy was performed because of peritonitis and an intraabdominal negative pressure therapy was applied after lavage of the abdominal cavity for 3 days. We also used the double layer open-pore film (Suprasorb CNP, Drainage Film; Lohmann & Rauscher International GmbH & Co. KG, Rengsdorf, Germany).

Conclusion: ENPT is an innovative endoscopic method in the treatment of anastomotic leaks of the upper gastrointestinum. Open-pore polyurethane-foam and small-bore open-pore film drainages can be used for the new endoscopic closure method for gastrointestinal defects. Compared to OPD one advantage of the novel OFD is its small diameter.

Keywords: Endoscopic vacuum therapy; Esophagus; Anastomotic insuffizieny; Peritonitis

Received: October 26, 2018; Accepted: November 06, 2018; Published: November 16, 2018
Introduction

Anastomotic leakage after gastrointestinal resections is the most severe and life threatening complication. New endoscopic methods of treatment have been developed to close transmural gastrointestinal defects (anastomotic insufficiencies, perforation) [1,2]. In recent years Endoscopic Negative Pressure Therapy (ENPT) became of major interest for surgeons and gastroenterologist [3]. Up to now more than 200 patients with esophageal defects were treated with ENPT; a success rate of 90% is reported [4].

Until now ENPT was performed using Open-pore Polyurethane foam Drainages (OPD). Disadvantage of this type of drainage is its diameter of 1.5–3 cm. Therefore, insertion of the drain through small openings becomes difficult or is impossible. A new small-bore Open-pore Film Drainage (OFD) has been developed using a thin double-layered open-pore film for construction. Diameter of this type of drainage is 4–6 mm. The device can be inserted through small openings easily. Hereewith we report ENPT in a case of anastomotic leakage after total gastrectomy using OPD and small-bore OFD devices.

Patient

A 71 year old patient was sent to our surgical department for ENPT 25 days after palliative total gastrectomy for ENPT. In a complicated post-operative course with developing an anastomotic leakage of the gastro-jejunostomy the patient had undergone relaparotomy with lavage and drainage of the abdominal cavity. Endoscopically we found an anastomosis leakage of 25 mm in diameter opened into the abdominal cavity. Tissue perfusion of the anastomotic region was uncompromised.

Material, Methods and Course of Treatment

We distinguish between extraluminal intracavitary and intraluminal ENPT [5,6]. In this case only intracavitary variant of therapy was used.

Intracavitary ENPT

Endoscopic Negative Pressure Therapy (ENPT) started with an Open-pore Polyurethane-foam Drainage (OPD). A 3 cm long and 1,5 cm in diameter open-pore polyurethane-foam (Suprasorb®CNP Wundschaum, Lohmann & Rauscher GmbH & Co. KG, Neuwied, Germany) was sutured at the tip of a gastric tube. The foam was grasped with forceps and pushed through the transmural defect of the anastomosis into the extraluminale cavity by endoscopic means. For material see Table 1 and course of ENPT is shown in Table 2. The tube was led out nasally and vacuum applied with an electronic vacuum device (KCI V.A.C. Freedome®, KCI USA Inc., San Antonio, Texas, USA). We used our standard negative pressure for ENPT of –125 mmHg, continuous suction, and high intensity. The extraluminale cavity collapsed with the foam and simultaneously the defect was closed.

After this initial endoscopic procedure and start of suction an additional laparotomy was performed because of the peritonitis.
After lavage of the abdominal cavity it was also drained with negative pressure using the thin double layered open-pore film which had been designed for this indication (Suprasorb CNP, Drainage Film; Lohmann & Rauscher International GmbH & Co. KG, Rengsdorf, Germany). No additional operative treatment for closure of the leakage was made.

In a relaparotomy after three days the OPD was changed in an operative-endoscopic rendezvous procedure using pull-through technique. In endoscopy the anastomotic leakage was found to be coated with granulation tissue, already Figure 4. For pull-through changing maneuver of the OPD, the tip of a new OPD was connected at the proximal end of the tube of the first OFD and pulled along the esophagus through the anastomotic defect. Again, no operative closing procedure was performed at the leakage side. Abdominal negative pressure therapy was ended, the abdominal wound was closed and treatment went on with ENPT solely.

On day 10 the anastomotic leakage was shrunken to a small fistula of 6 cm length and 12 mm in diameter. Because of the small opening it was impossible to renew the OPD. Therefore, ENPT went on with novel small-bore Open-pore Film Drainage (OFD). Figure 5 For construction the distal end, length 5 cm, of Polyurethane foam wrapped with foam or film.

Table 1: Material which was used for Endoscopic Negative Pressure Therapy.

<table>
<thead>
<tr>
<th>Open-pore material</th>
<th>OPD</th>
<th>OFD</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tube</td>
<td>Gastric tube (Ventrol, 12 Ch x 120 cm; Covidien Argyle, Dublin, Ireland)</td>
<td>Gastric tube (Ventrol, 12 Ch x 120 cm; Covidien Argyle, Dublin, Ireland)</td>
</tr>
<tr>
<td>Diameter of open-pore drainage (distal end wrapped with foam or film)</td>
<td>15 mm</td>
<td>5 mm</td>
</tr>
</tbody>
</table>

Table 2: Course of ENPT, operative and supplementary treatments are shown (open-pore polyurethane-foam drainage (OPD), open-pore film drainage (OFD)).

<table>
<thead>
<tr>
<th>Day of Treatment</th>
<th>Endoscopy</th>
<th>Operation</th>
<th>Feeding</th>
<th>Ventilation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Day 1</td>
<td>Intracavitary ENPT with OPD</td>
<td>Laparotomy, Lavage, abdominal negative pressure therapy with double layered film</td>
<td>Solely parenteral nutrition</td>
<td>General Anesthesia for procedures</td>
</tr>
<tr>
<td>Day 3</td>
<td>Intraoperative endoscopy with change of OFD in an endoscopic-operative rendezvous technique</td>
<td>Relaparotomy, lavage, removal of double layered film, end of abdominal negative pressure therapy, closure of abdominal wound, thoracic drainage because of a sero-pneumo thorax</td>
<td>Start of intestinal feeding with feeding tube</td>
<td>Artificial respiration after procedures until day 11</td>
</tr>
<tr>
<td>Day 6</td>
<td>Control endoscopy showing OPD in correct position and function, closing the leakage, no change of OPD, transnasally insertion of an intestinal feeding tube</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Day 10</td>
<td>Removal of OPD and change to OFD with additional nasally jejunal intestinal feeding tube</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Day 11</td>
<td></td>
<td></td>
<td></td>
<td>End of artificial respiration</td>
</tr>
<tr>
<td>Day 14</td>
<td>Removal of OFD, end of ENPT, renewing nasally intestinal feeding tube</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Day 15</td>
<td>Control endoscopy: small opening of leak</td>
<td>Intestinal feeding with tube and drinking water</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Day 18</td>
<td>Control endoscopy: clotted opening of leak</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Day 21</td>
<td>Control endoscopy: leakage is completely closed</td>
<td></td>
<td></td>
<td>Soft diet</td>
</tr>
<tr>
<td>Day 30</td>
<td>Follow-up endoscopy, no stenosis, healed anastomosis</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6 Month</td>
<td>Follow-up endoscopy, no stenosis, regular anastomosis</td>
<td></td>
<td></td>
<td>No diet</td>
</tr>
</tbody>
</table>
the gastric tube was wrapped in a small strip of the same thin double layered open-pore film material which had been used for abdominal negative pressure therapy (Suprasorb CNP, Drainage Film; Lohmann & Rauscher International GmbH & Co. KG, Rengsdorf, Germany). The film was fixed with a suture at the tube Figure 1B [7-12].

Results

ENPT ended after a total treatment time of 14 days. With OFD anastomotic leak was shrunken to a small channel of 5 mm in diameter. Tissue, in contact with the film, was covered with typical pimpled pattern. These patterns are an important sign for correct function of therapy Figure 6. 4 days after end of treatment anastomotic leak was found closed and patient started with soft diet. Follow up endoscopy after 6 months found a regular anastomosis without stenosis Figure 7.

Patient was ventilated for 8 days and stayed on intensive care unit for 23 days. Since day 6 of ENPT intestinal feeding was possible with an additional nasally inserted jejunal feeding tube. Details of the course of therapy are shown in Table 2.

Discussion

Up to now open-pore polyurethane-foams drainages were used for ENPT. One disadvantage of OPDs is the large diameter of the foam. Insertion through small opening can be very difficult or impossible. The new open-pore film drainage has a very
small diameter of 5 mm. This enables placement through small openings easily. Figure 5. With both open-pore devices liquids are drained in an active manner along the negative pressure gradient. With OFD secrets are drained through the pores of the film and between a small interspace of the very thin double-layered membrane. Because of its open-porosity negative pressure is applied along the whole surface of the film which comes into a close contact to the tissue.

Conclusion

ENPT is a new endoscopic method in the treatment of anastomotic leaks [13]. Open-pore polyurethane foam and small-bore open-pore film drainage can be used for the new endoscopic closure method of ENPT. Advantage of the novel OFD is its small diameter of few millimeters therefore it can be placed through small openings. ENPT can be used as a complementary tool to conventional operative procedures.

Conflict of Interest and Source of Funding

Gunnar Loske is a consultant of Lohmann & Rauscher GmbH & Co. KG. Tobias Schorsch, Wolfgang Schulze, Henning Schmidt-Seithe, Christian T. Müller declare no conflict of interest. For this work no funding was received from any organization.

Acknowledgement

We like to thank the nursing staff of the interdisciplinary endoscopic unit of Marienkrankenhaus Hamburg for their excellent technical assistance. We thank the colleagues of Department of Anesthesiology, Intensive Care Medicine and Pain Therapy for intensive care treatment.

References